Biodegradation of organic compounds and decrease in electrical conductivity by native consortium in effluents from the olive industry

Document Type : Original Article

Authors

1 UTN FRM, C. Rodriguez 273, Ciudad de Mendoza, Argentina

2 CONICET, Consejo Nacional de investigaciones Científicas y Técnicas, Argentina

Abstract

Purpose Effluents from machined olive waters are highly polluting. These have high organic load values such as the biological demand of oxygen and the chemical demand of oxygen, salinity, and others, which far exceed current regulations. The objective of this work was to achieve, through bioremediation by native microorganisms, the reduction of effluent contamination.
Method Bioremediation was achieved by supplementing the effluent with a source of carbon, nitrogen, and phosphorus in the approximate ratio 100: 5: 1, under aerobic conditions at room temperature (25 ± 1 °C) for a period of 7 to 14 days.
Results The consortium of microorganisms (bacteria and yeasts) was identified as: Pseudomonas aeruginosa strain Kasamber 11, Pseudomonas aeruginosa strain 1816, Klebsiella sp. strain DE004, Enterobacter sp. DKU NT 01, Pseudomonas sp. KC31, Bacillus sp. MG06, Candida thaimueangensis NWP2-1, Klebsiella sp. SI-AL-1B, Bacillus pumilus strain LX11, Bacillus sp. B9 (2015b), Bacillus pumilus strain Y7, Planomicrobium sp. strain MSSA-10 16S, Candida thaimueangensis strain S04-2.2 and one microorganism without identification. A reduction of approximately 40-80% of specific parameters and contamination indicators such as biological oxygen demand (BOD5), chemical oxygen demand (COD) and electrical conductivity was achieved.
Conclusion The microbial consortium achieved the reduction of the original contamination of the effluent from "mechanized olives" by biostimulation, transforming it into a less contaminated liquid that could be used for other uses or destinations.

Highlights

  • The effluent from mechanized olives can be bioremediated by biostimulation.
  • Native microorganisms in the effluent biodegrade BOD5, CE and COD by 40 to 80 %.
  • The consortium of bacteria and yeasts degraded the effluent to 25 C in 7 to 14 days.

 

Keywords


APHA: American Public Association (1992) Standard methods for examination of water and waste 18th ed. American Public health Association, Washington DC. https://doi.org/10.1246/nikkashi1948.74.894
Ayed L, Bekir K, Achour S, Cheref A, Bakhrouf A (2016) Exploring bioaugmentation strategies for azo dye CI Reactive Violet 5 decolourization using bacterial mixture:dye response surface methodology. Water Environ J 31:80–89
Ayed L, Bouguerraa A, Charefc A, Bakhroufa A, El Mzoughi R (2019) Biodegradation of olive mill wastewater by a newly isolated novel bacterial consortium under RSM optimized culture conditions. J Water Proc Eng 32:1-9. https://doi.org/10.1016/j.jwpe.2019.100986
Barrera Ó, Zafra Mejía C (2018) Factores clave en procesos de biorremediación para la depuración de aguas residuales. Una revisión Revista U.D.C.A Actualidad and Divulgación Científica 21(2):573–585. https://doi.org/10.31910/rudca. v21.n2.2018.1037
Beltran-Heredia J, Torregrosa J, Dominguez J, Garcia J (2000) Aerobic biological treatment of black table olive washing wastewaters: Effect of an ozonation stage. Process Biochem 35:1183–1190. https://doi.org/10.1016/S0032-9592(00)00160-6
Bestawy EE, Helmy S, Hussien H (2013) Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Water Sci 3:181–192. https://doi.org/10.1007/s13201-012-0071-0
Borgo E (2013) Diagnóstico sobre los efluentes generados y vertidos en la Industria Olivícola en empresas del Gran Mendoza- Sector aceitunas verdes en conserva. Tesis de grado, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo. Mendoza, Argentina
Borja R, Martín A, Alonso V, García I, Banks CJ (1995) Influence of different aerobic pretreatments on the kinetics of anaerobic digestion of olive mill. Water Res 29(2):489-495. https://doi.org/10.1016/0043-1354(94)00180-F
Chen Q, Ni J, Ma T, Liu T, Zheng M (2015) Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR. Bioresour. Technol 183:25-32. https://doi.org/10.1016/j.biortech.2015.02.022
Consejo Oleícola Internacional (COI) (2019) World table olive figures. https://www.internationaloliveoil.org/wp-content/uploads/2021/12/OT-W901-07-12-2021-P.pdf. Accessed:13 April 2020
Darvishi F (2012) Microbial biotechnology in olive oil industry, olive oil - constituents, quality, health properties and bioconversions, Boskou Dimitrios, Intech Open. https://doi.org/10.5772/28263
Duke NC, Burns KA, Swannell RPJ, Dalhaus O, Rupp RJ (2000) Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spills on mangroves: The Gladstone field trials. Mar Pollut Bull 41(7-12):403-412. https://doi.org/10.1016/S0025-326X(00)00133-8
Fadil K, Chahlaoui A, Ouahbi A, Zaid A, Borja R (2003) Aerobic biodegradation and detoxification of wastewaters form the olive oil industry. Int Biodeterioration and Degradation 51:37–41. https://doi.org/10.1016/S0964-8305(02)00073-2
FAO: Food and Agriculture Organization of the United Nations (1994) Water quality for agriculture 29 Rev. http://www.fao.org/3/t0234e/T0234E01.htm#ch1.4. Accessed: 8 August  2021
Flamarique J, Maldonado M, Lafi J (2016) Biorremediación de un efluente de la industria aceitunera a través de microorganismos nativos. XXIII Congreso Latinoamericano de Microbiología XIV. Congreso Argentino de Microbiología
Garbisu C, Amézaga IY, Alkorta I (2002) Biorremediación y Ecología. Revista Ecosistemas. Año XI, Nº 3, Septiembre-Diciembre. https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/591. Accessed: 20 August 2021
García García I, Jiménez Peña PR, Bonilla Venceslada JL, Martin Martin A, Martin Santos MA, Ramos Gomez E (2000) Removal of phenol compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus and Geotrichum candidum. Process Biochem 35:751-758. https://doi.org /10.1016/S0032-9592(99)00135-1
García S, Venosa AD, Suidan MT, Lee K, Cobanli, S, Haines JR (2007) Biostimulation for the treatment of an oil contaminated coastal salt march. Biodegradation 18(1):1-15. https://doi.org/10.1007/s10532-005-9029-3
Garzón JM, Rodríguez-Miranda JP, Hernández-Gómez C (2017) Revisión del aporte de la biorremediación para solucionar problemas decontaminación y su relación con el desarrollo sostenible. Rev Univ Salud 19(2):309-318. https://doi.org/10.22267/rus.171902.93
Gharsallah N (1994) Influence of dilution and phase separation on the anaerobic digestion of olive mill wastewaters. Bioprocess Eng 10:29–34. https://doi.org/10.1007/BF00373532
Hamdi M, BouHamed H,  Ellouz R (1991) Optimization of the fermentation of olive mill waste-waters by Aspergillus niger. Appl Microbiol Biotechnol 36:285–288. https://doi.org/10.1007/BF00164436
Hamdi M (1993) Future prospects and constraints of olive mill wastewaters, use and treatment: A review. Bioprocess Eng 8:39–45. https://doi.org/10.1007/BF00369831
Hassanshahian M, Ahmadinejad M, Tebyanian H, Kariminik A (2013) Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). Mar Pollut Bull 73(1):300-305. https://doi.org/10.1016/j.marpolbul.2013.05.002
Kyriacou A, Lasaridi K, Kotsou M, Balis C, Pilidis G (2005) Combined bioremediation and advanced oxidation of green table olive processing wastewater. Process Biochem 40:1401-1408. https://doi.org/10.1016/j.procbio.2004.06.001
Laconi S, Molle G, Cabiddu A, Pompei R (2007) Bioremediation of olive oil mill wastewater and production of microbial biomass. Biodegradation. 18:559-566. https://doi.org/10.1007/s10532-006-9087-1
Lucas MS, Peres José A (2009) Removal of COD from olive mill wastewater by Fenton’s reagent: Kinetic study. J Hazard Mater 168(2–3):1253-1259. https://doi.org/10.1016/j.jhazmat.2009.03.002
Lucena-Padrós H, Caballero-Guerrero B, Maldonado-Barragán A, Ruiz-Barba JL (2014) Genetic diversity and dynamics of bacterial and yeast strains associated to Spanish-style green table-olive fermentations in large manufacturing companies. Int J Food Microbiol 190:72-78. https://doi.org/10.1016/j.ijfoodmicro.2014.07.035
McNamara CJ, Anastasiou CC, O’Flaherty V, Mitchell R (2008) Bioremediation of olive mill wastewater. Int Biodeterioration and Biodegradation 61:127–134
Mèrcade ME, Manresa MA (1994) The use of agroindustrial by-products for biosurfactant production. J Am Oil Chem Soc 71:61-64. https://doi.org/10.1007/BF02541473
Miller GL (1959) Use of dinitrosaiicyiic acid reagent for determination of reducing sugar. Anal Chem 31(3):426-428. https://doi.org/10.1021/ac60147a030
Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54(4):655-670. https://doi.org/10.1111/ejss.4_12398
Nelson DL, Cuchillo Foix CM, Lehninger AL, Cox MM (2005) Lehninger: Principios de Bioquímica. Omega, Barcelona
O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR and Taylor JW (Eds) The fungal holomorph: Mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, 225-233
Ojewumi ME, Okeniyi JO, Ikotun JO, Okeniyi ET, Ejemen VA, Popoola A (2018) Bioremediation: Data on Pseudomonas aeruginosa effects on the bioremediation of crude oil polluted soil. Data in brief 19:101–113. https://doi.org/10.1016/j.dib.2018.04.102
Pellizzari EE, Marinich LG, Flores SA, Giménez CM (2015) Degradación de arsénico por Pseudomonas aeruginosa para biorremediación de agua. Estudio preliminar. Av. Cienc. Ing 6:1-5. https://www.redalyc.org/pdf/3236/323635882001.pdf. Accessed: 1 July 2020
Ramos-Cormenzana A, Juarez-Jimenez B, Garcia-Pareja MP (1996) Antimicrobial activity of olive mill wastewaters (alpechín) and biotransformed olive oil mill wastewater. Int Biodeterioration and Biodegradation 38:283–290. https://doi.org/10.1016/S0964-8305(96)00061-3
Ranalli A (1994) Microbiological treatment of oil mill waste waters. Grasas y aceites 43(1):16-19. https://doi.org/10.3989/gya.1992.v43.i1.1191
Resolution No.778 (1996) Expte Nro: 217.029 named: Secretaría de asuntos institucionales s/ Reglamento General para el Control de Contaminación Hídrica; (T.S.221.1996). Honorable Administrative Court of the General Department of Irrigation
Salinas A, Santos M, Soto O, Delgado E, Pérez H, Háuad LA, Medrano H (2008) Development of a bioremediation process by biostimulation of native microbial consortium through the heap leaching technique. J Environ Manage 88(1):115-119. https://doi.org/10.1016/j.jenvman.2007.01.038
Sanscartier D, Laing T, Reimer K, Zeeb B (2009) Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: Laboratory and field studies. Chemosphere 77(8):1121-1126. https://doi.org/10.1016/j.chemosphere.2009.09.006
Tabatabaei SH, Najafi P, Heidarpour M (2020) Urban wastewater reuse in agriculture for irrigation in arid and semi-arid regions-A review. Int J Recycl Org Waste Agric 9(2):193-220. https://doi.org/10.30486/ijrowa.2020.671672
Tabatabaei SH, Najafi P, Mirzaei SMJ, Nazem Z, Heidarpour M, Hajrasoliha S, Afyuni M, Harchegani HB, Landi E, Akasheh L, Zamanian M, Barani M, Amini H (2012) Compost leachate recycling through land treatment and application of natural Zeolite. Int J Recycl Org Waste Agric 1(2). https://doi.org/10.1186/2251-7715-1-2
Tortosa G, Castellano-Hinojosa A, Correa-Galeote D, Bedmar  EJ (2017) Evolution of bacterial diversity during two-phase olive mill waste (alperujo) composting by 16S rrna gene pyrosequencing. Bioresour Technol 224:101–111. https://doi.org/10.1016/j.biortech.2016.11.098
UNESCO (2017) Programa mundial de evaluación de los recursos hídricos de las naciones unidas. Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos. Aguas residuales: El recurso desaprovechado: 1-5, 2, 13, 41. Editors: EW Rice, RB Baird, AD Eaton París. http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/2017-wastewater-the-untapped-resource/. Accessed 28 July 2020