Sugarcane waste products as source of phytotoxic compounds for agriculture

Document Type : Original Article

Authors

1 Departamento de Química, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari, 514, Goiabeiras, Vitória – ES, CEP 29075-910, Brazil

2 Curso de Graduação em Farmácia, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro – IFRJ, Rua Professor Carlos Wenceslau, 343 Realengo, Rio de Janeiro – RJ, Brazil

3 Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco A, segundo andar- 028 - Ilha do Fundão - Cidade Universitária - Rio de Janeiro – RJ, Brazil

4 Tommasi Ambiental, Rua Arara Azul, 187, Área 05, Galpão 03, Novo Horizonte, Serra-ES. CEP: 29.163-306, Brazil

5 Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Vila Velha, Vila Velha – ES, CEP 29102-770, Brazil

Abstract

Purpose This article aims to evaluate the phytotoxic potential of metabolites present in the waste from sugarcane processing industry, such as vinasse, filter cake and bagasse, in order to reuse them as raw materials for the production of natural herbicides.
Methods Vinasse, filter cake and bagasse were submitted to different treatments, which originated 15 different samples. They were chemically identified by negative-ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI(-)FT-ICR MS), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography–mass spectrometry (LC-MS). Furthermore, they were submitted to phytotoxic assays, and to total phenolic content determination. Correlation between chemical and biological methods was performed through chemometric analysis and multiple linear regression.
Results From vinasse, dichloromethane (VDiCl) and ethyl acetate (VAcOEt) samples were the most phytotoxic fractions at the concentrations of 500 mg L-1 and 250 mg L-1. VDiCl inhibited L. sativa root growth by 72.6% and 59.7%, respectively, while VAcOEt inhibited by 62.13% and 30.67%, respectively. The IC50 values established for VDiCl e VAcOEt were 168.4 mg L-1 e 262.3 mg L-1, respectively. The set of analyzes provided evidence that the synergistic action between fatty acids and phenolic compounds was of paramount importance for greater phytotoxicity of fractions.
Conclusion The results indicate that the waste from the sugarcane processing industry, especially vinasse, can be reused as raw material for the production of natural herbicides, minimizing the environmental risks of incorrect disposal.

Keywords


Alamsjah MA, Hirao S, Ishibashi F, Oda T, Fujita Y (2008) Algicidal activity of polyunsaturated fatty acids derived from Ulva fasciata and U. pertusa (Ulvaceae Chlorophyta) on phytoplankton. J. Appl Psychol 20: 263-270.
https://doi.org/10.1007/978-1-4020-9619-8_33
Attard TM,  McElroy CR, Rezende CA, Polikarpov I, Clark JH,  Hunt  AJ (2015) Sugarcane waste as a valuable source of lipophilic molecules. Ind. Crops Prod  76: 95-103.
https://doi.org/10.1016/j.indcrop.2015.05.077
Baikow VE (1982) Manufacture and refining of raw cane sugar. Elsevier, Amesterdam
Basanta R, Delgado MAG, Martínez JEC, Vázquez HM, Vázquez GB (2007) Sostenibilidad del reciclaje de residuos de la agroindustria azucarera. Una revisión. Cienc. y Tecnol. Aliment 5: 293-305. https://doi.org/10.1080/11358120709487704
Bin Q, Peterson DG (2016) Identification of bitter compounds in whole wheat bread crumb. Food Chem 203: 8-15.
https://doi.org/10.1016/j.foodchem.2016.01.116
Brereton R (2003) Chemometrics: Data analysis for the laboratory and chemical plant. John Wiley & Sons, Chichester
Bro R,  Smilde AK (2014) Principal component analysis. Anal. Methods 6: 2812-2831. https://doi.org/10.1039/c3ay41907j
Caderby E,  Baumberger S, Hoareau W, Fargues C, Decloux M, Maillard MN (2013) SugarCane stillage: A potential source of natural antioxidants. J. Agric. Food Chem. 61: 11494-501. https://doi.org/10.1021/jf4039474
Carrilho ENVM, Labuto G, Kamogawa MY (2016) Destination of vinasse, a residue from alcohol industry: Resource recovery and prevention of pollution. Academic Press, Cambridge,  pp 21-43.
https://doi.org/10.1016/B978-0-12-803837-6.00002-0
Cheavegatti-Gianotto A, Abreu HMC,  Arruda  P, Bespalhok Filho JC,  Burnquist WL, Creste S, Ciero L, Ferro JA, Figueira AVO, Filgueiras TS, Grossi-de-Sá MF, Guzzo EC, Hoffmann HP, Landell MGA, Macedo N, Matsuoka S, Reinach FC, Romano E, Silva WJ, Silva Filho MC, Ulian EC (2011) Sugarcane (Saccharum X officinarum): A reference study for the regulation of genetically modified cultivars in Brazil. Trop Plant Biol. 4: 62–89.
https://doi.org/10.1007/s12042-011-9068-3
Chung IM, Ahn JK,Yun SJ (2001) Assessment of allelopathic potential of barnyard grass (Echinochloa crus-gall) on rice (Oriza sativa L.) cultivars. Crop Prot 20: 921-9282.
https://doi.org/10.1016/S0261-2194(01)00046-1
Clementson C,    Gopaul L (2020) Laboratory study of the nutrient release rate for vinasse on sandy soil and three coastal clay soils of Guyana. Int. j. recycl. org. waste agric. 9: 137-150. https://doi.org10.30486/IJROWA.2020.1890596.1026
Colombo R, Yariwake JH, Queiroz EF, Ndjoko K, Hostettmann K (2006) On-line identification of further flavone C-and Oglycosides from sugarcane (Saccharum officinarum L., Gramineae) by HPLCUV-MS. Phytochem Anal 17: 337-43.
https://doi.org/10.1002/pca.923
Conab (2018)  Acomp. crop breeding cana, v. 5 - Safra 2018/19.
https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar/item/download/25631_78a68ec25e726ef2c565b0991a1e4a0d. Accessed 30 August 2018
Del Río JC, Marques G, Lino AG, Lima CF, Colodette J L, Gutiérrez A (2015)  Lipophilic phytochemicals from sugarcane bagasse and straw. Ind. Crops Prod. 77: 992-1000.
https://doi.org/10.1016/j.indcrop.2015.09.064
Duarte-Almeida MJ, Novoa AV, Linares AF, Lajolo FM, Inés Genovese M (2006) Antioxidant activity of phenolic compounds from sugarcane (Saccharum officinarum L.) juice. Plant Foods Hum. Nutr 61: 187-192.
https://doi.org/10.1007/s11130-006-0032-6
Fearn T, Riccioli C, Garrido-Varo A, Guerrero-Ginel JE (2009) On the geometry of SNV and MSC. Chemom. Intell. Lab. Syst. 96: 22-26. https://doi.org/10.1016/j.chemolab.2008.11.006
Ferreira MMC (2015) Quimiometria: Conceitos, Métodos e Aplicações; Editora da Unicamp, Campinas
Gansser D, Spiteller G (1995) Plant constituents interfering with human sex hormone-binding globulin. Evaluation of a test method and its application to Urtica dioica root extracts; Z Naturforsch C Biosci. 50: 98-104.
https://doi.org/10.1515/znc-1995-1-215
George PAO, Eras JJC, Gutierrez AS, Hens L, Vandecasteele C (2010) Residue from sugarcane juice filtration (filter cake): Energy use at the sugar factory. Waste Biomass Valor 1: 407–413. https://doi.org/10.1007/s12649-010-9046-2
Gomes ACC, Gomes AKC, Magalhães DPD, Buss DF, Simas NK, Kuster RM (2016) In vitro phytotoxic activity of Saccharum officinarum leaves on lettuce and weed Calopogonium mucunoides. Allelopath. J. 39: 177-190
Guss KL, Pavanni S, Prati B, Dazzi L, Oliveira JP, Nogueira BV, Pereira TMC, Fronza M, Endringer DC, Scherer R (2017) Ultrasound-assisted extraction of Achyrocline satureioides prevents contrast-induced nephropathy in mice. Ultrason. Sonochem 37: 368-374.
https://doi.org/10.1016/j.ultsonch.2017.01.035
Islam MS,  Zaman F, Iwasaki A, Suenaga K, Kato-Noguchi H (2019) Phytotoxic potential of Chrysopogon aciculatus (Retz.) Trin. (Poaceae). Weed Biol Manag 19 (2): 51-58.
https://doi.org/10.1111/wbm.12175
Kumar R, Verma D, Singh BL, Kumar U (2010) Shweta composting of sugar-cane waste by-products through treatment with microorganisms and subsequent vermicomposting. Bioresour. Technol 101: 6707-11.
https://doi.org10.1016/j.biortech.2010.03.111
Ladhari A, Omezzine F, Dellagreca M, Zarrelli A, Zuppoline S, Haouala R (2013) Phytotoxic activity of Cleome arabica L. and its principal discovered active compounds. S. Afr. J. Bot 88: 341-351. https://doi.org/10.1016/j.sajb.2013.08.016
Li ZH, Wang Q, Ruan X, Pan C, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15: 8933-8952.
https://doi.org/10.3390/molecules15128933
Luz DA (2018) Fatty acids and phenolic compounds as phytotoxic substances in agro-industrial waste: Vinasse, filter cake and bagasse. Dissertation. Federal University of Espírito Santo
Macías FA, Molinillo JMG, Galindo JCG, Varela RM, Simonet AM, Castellano  D (2008) The use of allelopathic studies in the search for natural herbicides. J. Crop Prod 4: 237-255. https://doi.org/10.1300/J144v04n02_08
Macías FA, Castellano D, Molinillo JMG (2010) Search for a standard phytotoxic bioassay for allelochemicals: Selection of standard target species . J. Agric. Food Chem 48: 2512-2521. https://doi.org/10.1021/jf9903051
Martin-Arjol I, Bassas-Galia M, Bermudo E, Garcia F, Manresa A (2010) Identification of oxylipins with antifungal activity by LC-MS/MS from the supernatant of Pseudomonas 42A2. Chem. Phys. Lipids 163: 341-6.
https://doi.org/10.1016/j.chemphyslip.2010.02.003
Moraes PA (2017) Phytochemical study of Palicourea officinalis and spatial distribution of secondary metabolites of leaves of Psychotria and Palicourea species by DESI-MS direct and indirect. Federal University of Goias. Doctoral thesis
Nwajiaku IM, Olanrewaju1 JS, Sato1 K, Tokunari T, Kitano S,  Masunaga1 T (2018) Change in nutrient composition of biochar from rice husk and sugarcane bagasse at varying pyrolytic temperatures. Int. j. recycl. org. waste agric. 7: 269–276.
https://doi.org/10.1007/s40093-018-0213-y
Oliveira BG, Costa HB, Ventura JA, Kondratyuk TP, Barroso MÊS, Correia RM, Pimentel EF, Pinto FE, Endringer DC, Romão W (2016) Chemical profile of mango (Mangifera indica L.) using electrospray ionisation mass spectrometry (ESI-MS). Food Chem. 204: 37-45.
https://doi.org/10.1016/j.foodchem.2016.02.117
PNRS  (2011) National Solid Waste Plan. Decree No. 7.404 / 10, which regulates the National Policy on Solid Waste. Brasília: Ministry of the Environment of Water Resources and the Legal Amazon, Available in: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=636. Accessed 6 de july 2018
Rabelo SC, Carrere H, Maciel R, Costa AC (2011)  Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinary cincept. Bioresour. Technol. 102: 7887-7895. https://doi.org/10.1016/j.biortech.2011.05.081
Sampietro DA, Vattuone MA (2006) Nature of the interference mechanism of sugarcane (Saccharum officinarum L.) straw. Plant Soil 280: 157–169.
https://doi.org/10.1007/s11104-005-2856-5
Sampietro DA, Vattuone MA, Isla MI (2006) Plant growth inhibitors isolated from sugarcane (Saccharum officinarum) straw. J. Plant Physiol. 163: 837-846.
https://doi.org/10.1016/j.jplph.2005.08.002
Singh A, Lal UR, Mukhtar H, Singh P, Shah G, Dhawan R (2015) Phytochemical profile of sugarcane and its potential health aspects. Pharmacogn. Rev 9: 45-54.
https://doi.org/10.4103/0973-7847.156340
Sitthinoi P, Lertmongkol S, Chanprasert W, Vajrodaya S (2017) Allelopathic effects of jungle rice (Echinochloa colona (L.) Link) extract on seed germination and seedling growth of rice. Agric. Nat. Resour 51: 74-78.
https://doi.org/10.1016/j.anres.2016.09.004
Spindola KCVW,  Simas NK, Santos CE, Silva AG, Romão W, Vanini G, Silva SRC, Borges GR, Souza FG,  Kuster RM (2016)  D. grandiflorum, a hybrid ornamental plant, is a source of larvicidal compounds against A. aegypti larvae. Rev. bras. farmacogn 26: 342–346.
https://doi.org/10.1016/j.bjp.2016.01.003
Teixeira SR, Magalhães RS, Arenales A. Souza AE, Romero M, Rincón JM (2014) Valorization of sugarcane bagasse ash: Producing glass-ceramic materials. J. Environ. Manage 134: 15-19. https://doi.org/10.1016/j.jenvman.2013.12.029
Turk MA, Tawaha MA (2002) Inhibitory effects of aqueous extracts of barley on germination and growth of lentil. J. Agron 1: 28-30. Available in: http://docsdrive.com/pdfs/ansinet/ja/2002/28-30.pdf. Acessed 30 July 2018
Walters DR, Cowley T, Weber H (2006) Rapid accumulation of trihydroxy oxylipins and resistance to the bean rust pathogen Uromyces fabae following wounding in Vicia faba. Ann. Bot 97: 779–784. https://doi.org10.1093/aob/mcl034
Wu  JT,  Chiang YR, Huang WY, o Jane WN (2006) Cytotoxic effects of free fatty acids on phytoplankton algae and cyan bacteria. Aquat. Toxicol 80: 338-345.
https://doi.org/10.1016/j.aquatox.2006.09.011
Yadav RL, Solomon S (2006) Potential of developing sugarcane by-product based industries in India. Sugar Tech 8: 104–111. https://doi.org/10.1007/BF02943642
Zheng R, Su S, Zhou H, Yan H, Ye J, Zhao Z, You L, Fu X (2017) Antioxidant/antihyperglycemic activity of phenolics from sugarcane (Saccharum officinarum L.) bagasse and identification by UHPLC-HR-TOFMS. Ind. Crops Prod 101: 104-114.
https://doi.org/10.1016/j.indcrop.2017.03.01