Impacts of different pig slurry application methods on soil quality indicators in a maize-soybean cropping sequence in the Sub-humid Pampas of Argentina

Document Type: Original Article

Authors

1 Área Suelos y Producción Vegetal, Instituto Nacional de Tecnología Agropecuaria, Ruta Nº 12 km 3, Marcos Juárez, Córdoba, Argentina

2 Cátedra de Edafología. Facultad de Ciencias Agropecuarias. Universidad Nacional de Córdoba. Ciudad de Córdoba, Argentina

3 Cátedra de Fertilidad y Fertilizantes. Facultad de Agronomía. Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina

Abstract

Purpose In Argentina, pig slurry (PS) is spread in surface with N losses in ammonia form. Different methods to decrease these emissions are available, but there is poor information about their impacts on the soil-plant system. The objective of this study was to compare the effects of different PS application methods on the soil quality in a maize-soybean cropping sequence.
Methods PS application methods were evaluated: acidified (AS), incorporated (IS), surface (SS), mineral fertilization (MF) and control (C). The experimental design was arranged in a randomized block with three replicates. Chemical parameters and microbiological parameters were determined. Also, grain yields and N uptake were measured.
Results IS caused increases in anaerobic nitrogen and basal respiration of soil on soybean. Treatments with PS and/or FM showed lower values in pH than C in both crops, and higher electrical conductivity only in maize. SS treatment showed higher Pe on soybean, indicating a maintenance of the P levels with respect to those in MF and C. The concentration of NO3- increased with MF in both crops. In maize, MF presented similar concentrations to AS and SS. IS increased grain yields of maize by 16 %, whereas SS and AS increased yields of soybean by 112% and 79%, respectively, compared to C.
Conclusions The different PS application methods had similar effects on most of the indicators of soil quality. In maize, IS and AS were more efficient in retaining N within the soil-plant system, whereas, in soybean, the SS led to higher yields.

Keywords


Aita C, Giacomini SJ, Hübner AP (2007) Nitrificação do nitrogênio amoniacal de dejetos líquidos de suínos em solo sob sistema de plantio direto. Pesqui Agropecu Bras 42:95–102. http://dx.doi.org/10.1590/S0100-06832008000500031

Aita C, Giacomini SJ (2008) Nitrato no solo com a aplicação de dejetos líquidos de suínos no milho em plantio direto. Rev Bras Cienc do Solo 32:2101–2111. http://dx.doi.org/10.1590/S0100-06832008000500031

Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic Press Inc, London, England

Astier-Calderón M, Maass-Moreno M, Etchevers-Barra J (2002) Derivación de indicadores de calidad de suelos en el contexto de la agricultura sustentable. Agrociencia 36:605–620

Balota EL, Machineski O, Priscila E, Truber V (2010) Soil carbon and nitrogen mineralization caused by pig slurry application under different soil tillage systems. Pesqui Agropecu Bras 45:515–521. http://dx.doi.org/10.1590/S0100-204X2010000500011

Balota EL, Machineski O, Hamid KIA, Hamid KIA,Yada IFU, Barbosa GMC, Nakatani AS, Coyne MS (2014) Soil microbial properties after long-term swine slurry application to conventional and no-tillage systems in Brazil. Sci Total Environ 490:397–404. https://doi.org/10.1016/j.scitotenv.2014.05.019

Biau A, Santiveri F, Mijangos I, Lloveras J (2012) The impact of organic and mineral fertilizers on soil quality parameters and the productivity of irrigated maize crops in semiarid regions. Eur J Soil Biol 53:56–61. https://doi.org/10.1016/j.ejsobi.2012.08.008

Bócoli ME, Mantovani JR, Miranda JM, Marques DJ, Da Silva AB (2016) Soil chemical properties and maize yield under application of pig slurry biofertilizer. Rev Bras Eng Agrícola e Ambient 20:42–48. http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p42-48

Bremmer J (1965) Inorganic forms of nitrogen. In: Evans D, White J, Ensminger L, Clark F (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties. Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, USA, pp 1179–1237

Bremmer J (1996) Nitrogen-Total. In: Sparks D, Page A, Loeppert R, et al. (eds) Methods of soil analysis: Chemical methods. Part 3. Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, USA, pp 1085–1121

Cambardella C, Eliott E (1993) Methods for physical separation and characterization of soil organic matter fractions. Geoderma 56:449–457. https://doi.org/10.1016/B978-0-444-81490-6.50036-4

Carrizo ME, Alesso CA, Girello G, Capeletti M, Micheloud H, Imhoff S (2014) Rendimiento de maíz y cambios en propiedades edáficas luego de la aplicación de efluentes líquidos porcinos. FAVE Sección ciencias Agrar 13:51–62. http://www.dx.doi.org/10.14409/fa.v13i1/2.4960

Comin JJ, Loss A, Veiga M, Guardini R, Schmitt DE, Oliveira PAV, Belli Filho P, Couto RR, Benedet L, Muller Júnior V, Brunetto G (2013) Physical properties and organic carbon content of a Typic Hapludult soil fertilised with pig slurry and pig litter in a no-tillage system. Soil Res 51:459–470. https://doi.org/10.1071/SR13130

Costa M, Shigaki F, Alves B, Kleinman P, Pereira M (2014) Swine manure application methods effects on ammonia volatilization, forage quality, and yield in the Pre-Amazon Region of Brazil. Chil J Agric Res 74:311–318. http://dx.doi.org/10.4067/S0718-58392014000300009

Damian JM, Muraro DS, Basso CJ, Da Silva NA, Pinto MAB, Santi AL (2018) Strategies for fertilization with pig and cattle slurry in wheat crop. Rev Bras Eng Agrícola e Ambient 261–266. http://dx.doi.org/10.4067/S0718-58392014000300009

Daudén A, Quílez D (2004) Pig slurry versus mineral fertilization on corn yield and nitrate leaching in a Mediterranean irrigated environment. Eur J Agron 21:7–19. https://doi.org/10.1016/S1161-0301(03)00056-X

Di Rienzo J, Casanoves F, Balzarini M, Gonzalez L, Tablada M, Robledo C (2017) InfoStat versión 2017. Grup. InfoStat, FCA. Univ. Nac. Córdoba

Divito GA, Rozas HRS, Echeverria HE, Studdert GA, Wyngaard N (2011) Long term nitrogen fertilization: Soil property changes in an Argentinean Pampas soil under no tillage. Soil Tillage Res 114:117–126. https://doi.org/10.1016/j.still.2011.04.005

Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, et al. (eds) Defining soil quality for a sustainable environment. Soil Science Society of America and American Society of Agronomy, Madison, pp 3–21

Echeverria HE, San Martin NF, Bergonzi R (2000) Metodos rápidos de estimación de nitrógeno potencialmente mineralizable en suelos. Cienc del Suelo 18:9–16

Fangueiro D, Hjorth M, Gioelli F (2015a) Acidification of animal slurry– A review. J Environ Manage 149:46–56. https://doi.org/10.1016/j.jenvman.2014.10.001

Fangueiro D, Pereira J, Bichana A, Surgy S, Cabral F, Coutinho J (2015b) Effects of cattle-slurry treatment by acidification and separation on nitrogen dynamics and global warming potential after surface application to an acidic soil. J Environ Manage 162:1–8. https://doi.org/10.1016/j.jenvman.2015.07.032

Fangueiro D, Surgy S, Fraga I, Cabral F, Coutinho J (2015c) Band application of treated cattle slurry as an alternative to slurry injection: Implications for gaseous emissions, soil quality, and plant growth. Agric Ecosyst Environ 211:102–111. https://doi.org/10.1016/j.agee.2015.06.003

Fangueiro D, Surgy S, Fraga I, Monteiro FG, Cabral F, Coutinho J (2016) Acidification of animal slurry affects the nitrogen dynamics after soil application. Geoderma 281:30–38. https://doi.org/10.1016/j.geoderma.2016.06.036

Ferreras L, Toresani S, Bonel B, Fernández E, Bacigaluppo S, Faggioli V, Beltrán C (2009) Parámetros químicos y biológicos indicadores de calidad del suelo en diferentes manejos. Cienc del suelo 27:103–114

Groot JCJ, Van Der Ploeg J, Verhoeven FPM, Lantinga EA (2007) Interpretation of results from on-farm experiments: Manure-nitrogen recovery on grassland as affected by manure quality and application technique. 2. A sociological analysis. NJAS - Wageningen J Life Sci 54:255–268. https://doi.org/10.1016/S1573-5214(07)80017-0

Hao X, Chang C (2003) Does long-term heavy cattle manure application increase salinity of a clay loam soil in semi-arid southern Alberta? Agric Ecosyst Environ 94:89–103. https://doi.org/10.1016/S0167-8809(02)00008-7

Helmers MJ, Moody LB, Burns R (2008) Literature review utilization of manure nutrients for soybean crop production. IOP Publishing PhysicsWeb. https://pdfs.semanticscholar.org/799b/7d3acc9eb1451d312a7dfa38e9f98fae92ed.pdf. Accessed 12 February 2018

INTA (1978) Carta de suelos de la República Argentina Hoja 3363-17. Buenos Aires

IRAM 29410 (1999). Determinación del pH. Instituto Argentino de Normalización y Certificación.

IRAM-SAGPyA 29572 -1 (2011) Determinación de nitrógeno en suelo por el método Kjeldahl modificado. Parte 1 - Escala semi-micro

IRAM-SAGyP 29570-1 (2010) Determinación de fósforo extraíble en suelos. Parte 1 - Método Bray Kurtz 1 modificado (Extracción con solución de fluoruro de amonio - ácido clorhídrico). 19

IRAM-SAGyP 29571-2 (2011) Determinación de materia orgánica en suelos. Parte 2 - Determinación de carbono orgánico oxidable por mezcla oxidante fuerte, escala semi-micro. IRAM 15

Jenkinson D, Powlson D (1976) The effects of biocidal treatments on metabolism in soil-V: A methods for measuring soil biomass. Soil Biol Biochem 8:209–213. https://doi.org/10.1016/0038-0717(76)90005-5

Liu F, Mitchell CC, Odom JW, Hill DT, Rochester EW (1998) Effects of swine laggon effluent application on chemical properties of a loamy sand. Bioresour Technol 63:65–73. https://doi.org/10.1016/S0960-8524(97)00086-2

Liu E, Yan C, Mei X, He W, Bing SH, Ding L, Liu Q, Liu S, Fan T (2010) Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 158:173–180. https://doi.org/10.1016/j.geoderma.2010.04.029

Lourenzi CR, Ceretta CA, Souza Da Silva L, Girotto E, Lorensini F, Tiecher TL, De Conti L, Trentin G, Brunetto G (2013) Nutrients in soil layers under no-tillage after successive pig slurry applications. Rev Bras Ciência do Solo 37:157–167. http://dx.doi.org/10.1590/S0100-06832013000100016

Maggi CF, Freitas PSL de, Sampaio SC, Dieter J (2013) Impacts of the application of swine wastewater in percolate and in soil cultivated with soybean. Eng Agrícola 33:279–290. http://dx.doi.org/10.1590/S0100-06832013000100016

Martínez E, Maresma A, Biau A, Berenguer P, Cela S, Santiveri F, Michelena A, Lloveras J (2017a) Long-term effects of pig slurry combined with mineral nitrogen on maize in a Mediterranean irrigated environment. F Crop Res 214:341–349. https://doi.org/10.1016/j.fcr.2017.09.025

Martínez JM, Galantini JA, Duval ME, López FM (2017b) Tillage effects on labile pools of soil organic nitrogen in a semi-humid climate of Argentina: A long-term field study. Soil Tillage Res 169:71–80. https://doi.org/10.1016/j.still.2017.02.001

Meade G, Lalor STJ, Cabe TMC (2011) An evaluation of the combined usage of separated liquid pig manure and inorganic fertiliser in nutrient programmes for winter wheat production. Eur J Agron 34:62–70. https://doi.org/10.1016/j.eja.2010.10.005

Morales D, Oliveira MP de, Taffe BL, Comin J, Soares CR, Lovato P (2016) Response of soil microbiota to nine-year application of swine manure and urea. Cienc Rural 46:260–266. http://dx.doi.org/10.1590/0103-8478cr20140565

Park SH, Lee BR, Jung KH, Kim TH (2018) Acidification of pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and perennial ryegrass regrowth as estimated by15N-urea flux. Asian-Australasian J Anim Sci 31:457–466. https://doi.org/10.5713/ajas.17.0556

Pegoraro VR, Boccolini M, Aimetta MB, Baigorria T, Cazorla CR (2014) Influencia de la aplicación de efluente porcino sobre propiedades químicas y biológicas de un Argiudol típico (Córdoba, Argentina). Cienc del Suelo 32:283–289

Plaza C, Hernández D, García-Gil JC, Polo A (2004) Microbial activity in pig slurry-amended soils under semiarid conditions. Soil Biol Biochem 36:1577–1585. https://doi.org/10.1016/j.soilbio.2004.07.017

Plaza-Bonilla D, Cantero-Martínez C, Bareche J, Arrúe JL, Lampurlanés J, Álvaro-Fuentes J (2017) Do no-till and pig slurry application improve barley yield and water and nitrogen use efficiencies in rainfed Mediterranean conditions? F Crop Res 203:74–85. https://doi.org/10.1016/j.fcr.2016.12.008

Ratto S, Giuffré L (2011) Ambiente y edafología. In: Conti M., Giuffré L (eds) Edafología, bases y aplicaciones ambientales argentinas. Facultad de Agronomia, Buenos Aires, Argentina, pp 549–569

Rhoades JD (1996) Electrical conductivity and total dissolved solids. In: Sparks D, Page A, Helmke P, et al. (eds) In Methods of Soil Analysis: Chemical Methods. Part 3. Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, USA, pp 417–435

Rocha Junior PR, Pires FR, Lima MM, Scherrer Menezes JF, Douglas Gomes V (2017) How does pig slurry fertilization influence percolated water and runoff erosion? A study of the soybean cycle in Brazilian Cerrado soil. Catena 157:205–212. https://doi.org/10.1016/j.catena.2017.05.011

Salazar Martínez Lagos F, Alfaro M, Rosas M, Rampoldi E, Macías F (2015) Factores edafoclimáticos que afectan las emisiones de amoniaco por aplicación de urea y purín de lechería en Andosoles. Chil J Agric Anim Sci, ex Agro-Ciencia 30:15–28

Sartor LR, Assmann AL, Assmann TS, Bigolin PE, Miyazawa M, Faccio Carvalho PC (2012) Effect of swine residue rates on corn, common bean, soybean and wheat yield. Rev Bras Ciência do Solo 36:661–669. http://dx.doi.org/10.1590/S0100-06832012000200035

Saviozzi A, Levi-Minzi R, Riffaldi R, Vanni G (1997) Laboratory studies on the application of wheat straw and pig slurry to soil and the resulting environmental implications. Agric Ecosyst Environ 61:35–43. https://doi.org/10.1016/S0167-8809(96)01077-8

Schmidt JP, Schmitt MA, Randall GW, Lamb JA, Orf JH, Gollany HT (2000) Swine manure application to nodulating and nonnodulating soybean. Agron J 92:987–992. https://doi.org/10.2134/agronj2000.925987x

Schröder JJ, Vermeulen GD, Van der Schoot JR, Van Dijk W, Huijsman, JFM, Meuffels GJHM, Van der Schans DA (2015) Maize yields benefit from injected manure positioned in bands. Eur J Agron 64:29–36. https://doi.org/10.1016/j.eja.2014.12.011

Sieling K, Ni K, Kage H (2014) Application of pig slurry- First year and residual effects on yield and N balance. Eur J Agron 59:13–21. https://doi.org/10.1016/j.eja.2014.05.003

Sørensen P, Amato M (2002) Remineralisation and residual effects of N after application of pig slurry to soil. Eur J Agron 16:81–95. https://doi.org/10.1016/S1161-0301(01)00119-8

Sørensen P, Eriksen J (2009) Effects of slurry acidification with sulphuric acid combined with aeration on the turnover and plant availability of nitrogen. Agric Ecosyst Environ 131:240–246. https://doi.org/10.1016/j.agee.2009.01.024

Sousa FA, Silva EDB, Campos AT, Martins Gandini AM, Correa JM, Grazziotti PH (2014) Microbial activity and production of coffee crops after fertilization with pig slurry. Biosci J 30:1041–1049

Terrero MA, Faz Á, Ondoño S, Muñoz MÁ (2018) Impacts of raw and purified pig slurry on carbon and nitrogen contents in Mediterranean agricultural soil. In: Munoz M., Zornoza R (eds) Soil management and climate change 1 st Edition: Effects on organic carbon, nitrogen dynamics, and greenhouse gas emissions. pp 207–219

Tiecher T, Tiecher TL, Kochem Mallmann FJ, Zafar M, Ceretta CA, Lourenzi C, Brunetto G, Colpo Gatiboni L, Rheinheimer dos Santos D (2017) Chemical, biological, and biochemical parameters of the soil P cycle after long-term pig slurry application in no-tillage system. Rev Bras Ciência do Solo 41:1–16. http://dx.doi.org/10.1590/18069657rbcs20170037

Tlustoš P, Hejcman M, Kunzová E, Hlisnikovský L, Zámečníková H, Száková J (2018) Nutrient status of soil and winter wheat (Triticum aestivum L.) in response to long-term farmyard manure application under different climatic and soil physicochemical conditions in the Czech Republic. Arch Agron Soil Sci 64:70–83. https://doi.org/10.1080/03650340.2017.1331297

Vance E, Brookes PC, Jenkinson D (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. https://doi.org/10.1016/0038-0717(87)90052-6

Webb J, Pain B, Bittman S, Morgan J (2010) The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response-A review. Agric Ecosyst Environ 137:39–46. https://doi.org/10.1016/j.agee.2010.01.001

Wienhold BJ (2005) Changes in soil attributes following low phosphorus swine slurry application to no-tillage sorghum. Soil Sci Soc Am J 69:206. https://doi.org/10.2136/sssaj2005.0206

Woli KP, Rakshit S, Lundvall JP, Sawyer JE, Barker DW (2013) Liquid swine manure application to soybean and residual-year nitrogen supply to corn. Soil Sci Soc Am J 77:1684. http://doi.org/10.2136/sssaj2013.05.0161

Yagüe MR, Bosch-Serra ÁD, Antúnez M, Boixadera J (2012) Pig slurry and mineral fertilization strategies’ effects on soil quality: Macroaggregate stability and organic matter fractions. Sci Total Environ 438:218–224.

Yanardağ IH, Zornoza R, Bastida F, Büyükkiliç-Yanardağ A, García C, Faz A, Mermut AR (2017) Native soil organic matter conditions the response of microbial communities to organic inputs with different stability. Geoderma 295:1–9. https://doi.org/10.1016/j.geoderma.2017.02.008