Characterization of microbial populations associated with different organic fertilizers

Document Type: Original Article

Authors

1 Faculty of Agricultural Sciences, Universidad de Cundinamarca, Fusagasugá, Colombia

2 Faculty of Sciences, Universidad Antonio Nariño (UAN), Bogotá D.C., Colombia

3 Faculty of Agricultural Sciences, Universidad de Antioquia, Calle 67 No. 53-108, Medellín, Antioquia, Colombia.

Abstract

Purpose Bacterial and fungal communities represent key bioindicators of soil quality and are essential for the maintenance of nutrient availability. Our purpose was to characterize the bacterial and fungal biodiversity associated with different compost mixtures, comparing microbiological indicators regarding the soil quality.
Methods Compost samples and mixtures were prepared (15:1 final ratio) with chemical fertilizer, animal manures (bovine, swine, and poultry) and green waste (such as tomato waste and leaves). Bacterial and fungal isolation and identification were performed through standard phenotypic methods. Statistical methods to assess differences between treatments included Shannon diversity, Chi-square tests, Bray-Curtis clustering, and Canonical Correspondence Analysis.
Results Streptomyces species, Gram-positive bacteria, were commonly found in differing abundances in all samples. Gram-positive species were predominant in soils amended with vegetable green waste while Gram-negative bacteria were more abundant in samples with chemical fertilizer. Fungal abundance increased in poultry manure and chemical fertilizers.
Conclusion Our findings suggested that organic matter recycling and composting resulted in the shifting of biodiversity in bacterial and fungal populations which might be associated with the availability of certain nutrient sources provided by the composting materials.

Keywords


Agnew JM, Leonard JJ (2003) The physical properties of compost. Compost Sci. Util 11: 238-264. https://doi.org/ 10.1080/1065657X.2003.10702132

Anastasi A, Varese GC, Filipello V (2005) Isolation and identification of fungal communities in compost and vermicompost. Mycologia 97(1): 33-44. https://doi.org/ 10.1080/15572536.2006.11832836

Arias EL, Piñeros PA (2008) Aislamiento e identificación de hongos filamentosos de muestras de suelo de los páramos de Guasca y Cruz verde. Dissertation, Pontificia Universidad Javeriana. Bogotá, Colombia, 204 p. Available in: http://javeriana.edu.co/biblos/tesis/ciencias/ tesis226.pdf Accessed: 31 March 2018

Awasthi SK, Wong JW, Li J, Wang Q, Zhang Z, Kumar S, Awasthi MK (2018) Evaluation of microbial dynamics during post-consumption food waste composting. Bioresour Technol. 251: 181-188. https://doi.org/10.1016 /j.biortech.2017.12.040

Baćmaga M, Kucharski J, Wyszkowska J (2014) Microbial and enzymatic activity of soil contaminated with azoxystrobin. Environ Monit Assess 187: 1-15.  https:// doi.org/10.1007/s10661-015-4827-5

Bojacá CR, Wyckhuys KA, Schrevens E (2014) Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. J. Clean. Prod 69: 26-33. https://doi.org/10.1016/j.jclepro.2014.01.078

Castanheira ÉG, Acevedo H, Freire F (2014) Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios. Appl. Energy 114: 958-967. https://doi.org/10.1016/j. apenergy.2013.09.010

Chandna P, Nain L, Singh S, Kuhad RC (2013) Assessment of bacterial diversity during composting of agricultural byproducts. BMC Microbiol 13: 1. https://doi.org/10. 1186/1471-2180-13-99

Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48(5): 489-499. https://doi.org/10.1007/s00374-012-0691-4

Chen Q, An X, Li H, Su J, Ma Y, Zhu YG (2016) Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ Int 92: 1-10. https://doi.org/10.1016/j.envint.2016.03.026

Chennaoui M, Salama M.Y, Aouinty B, Mountadar M, Assobhei O (2018) Evolution of bacterial and fungal flora during in-vessel composting of organic household waste under air pressure. J Mater Environ Sci 9(2): 680-688. https://www.jmaterenvironsci.com/Document/vol9/ vol9_N2/75-JMES-2849-Chennaoui.pdf

Cozzolino V, Di Meo V, Monda H, Spaccini R, Piccolo A (2016) The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil bacterial community composition. Biol Fertil Soils 52: 15-29. https://doi.org/10.1007/s00374-015-1046-8

Devi S, Sharma CR, Singh K (2012) Microbiological biodiversity in poultry and paddy straw wastes in composting systems. Braz J Microbiol 43(1): 288-296. https://doi.org/10.1590/S1517-83822012000100034

Ding J, Jiang X, Guan D, Zhao B, Ma M, Zhou B, Cao F, Yang X, Li L, Li J (2017) Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Appl Soil Ecol 111: 114-122. https://doi.org/10.1016/j.apsoil. 2016.12.003

Eghball B, Wienhold BJ, Gilley JE, Eigenberg RA (2002) Mineralization of manure nutrients. J Soil Water Conserv 57(6):470-473. https://digitalcommons.unl.edu/biosysengfacpub /139/ 

Escobar N, Mora J, Romero N (2012) Identificación de poblaciones bacterianas en compost de residuos orgánicos de fincas cafeteras de Cundinamarca. Bol Cient Mus Hist Nat 16(1): 75-88. http://boletincientifico. ucaldas.edu.co/downloads/Boletin(16)1_6.pdf

Escobar N, Mora J, Romero N (2013a) Dinámica microbiológica en abonos obtenidos a partir de residuos orgánicos de fincas cafeteras. Rev Agron 21: 29-39. http://agronomia.ucaldas.edu.co/downloads/Agronomia21(2)_4.pdf

Escobar N, Mora J, Romero N (2013b) Respuesta agronómica de Zea mays L. y Phaseolus vulgaris L. a la fertilización con compost. Luna Azul 37: 18-29. https://www.redalyc. org/pdf/3217/321729206003.pdf

Escobar N, Solarte V (2015) Bacterial diversity associated with organic fertilizer obtained by composting of agricultural waste. Int J Biosci Biochem Bioinform 5(2): 70–79. http://www.ijbbb.org/vol5/396-A0020.pdf

Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15(10): 579-590. https://doi.org/10.1038/nrmicro.2017. 87

Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38: 155-163. https://doi. org/10.1016/j.pbi.2017.04.018

Fischer D, Glaser B (2012) Synergisms between compost and biochar for sustainable soil amelioration. In Kumar S, Bharti A (ed), Management of Organic Waste, IntechOpen London, pp 167-198. Available in: http:// cdn.intechweb.org/pdfs/27163.pdf

Frąc M, Hannula SE, Bełka M, Jędryczka M (2018) Fungal biodiversity and their role in soil health. Front. Microbiol 9: 707. https://doi.org/10.3389/fmicb.2018.00707

Fries R, Akcan M, Bandick N, Kobe A (2005) Microflora of two different types of poultry litter. Br Poult Sci 46(6): 668-672. https://doi.org/10.1080/00071660500395483

Gaind S (2014) Effect of fungal consortium and animal manure amendments on phosphorus fractions of paddy-straw compost. Int Biodeterior Biodegradation 94: 90-97. https://doi.org/10.1016/j.ibiod.2014.06.023

Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu YG (2015) Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J 9: 1269-1279. https://doi.org/10.1038/ismej.2014.226

Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4: 9. Available in: http://palaeo-electronica.org/2001_1/past/past.pdf

Hartmann M, Frey B, Mayer J, Mäder P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9: 1177-1194. https:// doi.org/10.1038/ismej.2014.210

Hepperly P, Lotter D, Ulsh CZ, Seidel R, Reider C (2009) Compost, manure and synthetic fertilizer influences crop yields, soil properties, nitrate leaching and crop nutrient content. Compost Sci Util 17: 117-126. https://doi.org /10.1080/1065657X.2009.10702410

Kalita D, Joshi SR (2017) Study on bioremediation of Lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat. Biotechnol Rep 16: 48–57. https://doi.org/10.1016/j.btre.2017.11.003

Kuppusamy S, Kakarla D, Venkateswarlu K, Megharaj M, Yoon YE, Lee YB (2018) Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agric Ecosyst Environ 257: 47-59. https:// doi.org/10.1016/j.agee.2018.01.026

Lavelle P, Rodríguez N, Arguello O, Bernal J, Botero C, Chaparro P, Gómez Y, Gutiérrez A, del Pilar Hurtado M, Loaiza S,  Pullido SX (2014) Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agric Ecosyst Environ 185: 106-117. https://doi.org/10.1016/j.agee.2013.12.020

Lin, H, Sun, W, Zhang, Z, Chapman SJ, Freitag TE, Fu J., Zhang X, Ma J (2016) Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy–upland rotation system.  Environ Pollut 211: 332-337. https:// doi.org/10.1016/j.envpol.2016.01.007

Lupatini M, Korthals GW, de Hollander M, Janssens TK, Kuramae EE (2016) Soil microbiome is more heterogeneous in organic than in conventional farming system. Front. Microbiol 7: 2064. https://doi.org/10. 3389/fmicb.2016.02064

Ma S, Fang C, Sun X, Han L, He X, Huang G (2018) Bacterial community succession during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane under slight positive pressure. Bioresour Technol 259: 221-227. https://doi.org/10.1016 /j.biortech.2018.03.054

Manafi M, Kneifel W, Bascomb S (1991) Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbiol Rev (5): 335-348. https://mmbr.asm.org/ content/mmbr/55/3/335.full.pdf

Martínez LJ, Zinck JA (2004) Temporal variation of soil compaction and deterioration of soil quality in pasture areas of Colombian Amazonia. Soil Tillage Res 75: 3-18. https://doi.org/10.1016/j.still.2002.12.001

Meng Q, Xu X, Zhang W, Men M, Xu B, Deng L, Bello A, Jiang X, Sheng S, Wu X (2019) Bacterial community succession in dairy manure composting with static composting technique. Can J Microbiol 65(6): 436-449. https://doi.org/10.1139/cjm-2018-0560

Montenegro-Gómez SP, Gómez-Posada S, Barrera-Berdugo SE (2018) Efecto de la gallinaza sobre Azotobacter sp., Azospirillum sp. y hongos micorrízicos arbusculares en un cultivo de cebolla (Allium fistulosum). Entramado 13(2): 250-257. http://dx.doi.org/10.18041/entramado. 2017v13n2.26232

Neher DA, Weicht TR, Bates ST, Leff JW, Fierer N (2013) Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS ONE. 8,e79512. https://doi.org/10.1371/ journal.pone.0079512

Nigussie A, Kuyper TW, de Neergaard A (2015) Agricultural waste utilization strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia. Waste Manag 44: 82-93. https://doi.org/10. 1016/j.wasman.2015.07.038

Pan I, Dam B, Sen SK (2012) Composting of common organic wastes using bacterial inoculants. 3 Biotech, 2: 127-134. https://doi.org/10.1007/s13205-011-0033-5

Partanen P, Hultman J, Paulin L, Auvinen P, Romantschuk M (2010) Bacterial diversity at different stages of the composting process. BMC Microbiol 10: 94. https://doi. org/10.1186/1471-2180-10-94

Pathma J, Rahul GR, Kamaraj KR, Subashri R, Sakthivel N (2011) Secondary metabolite production by bacterial antagonists. Biol. Control 25: 165–181

Pineda A, Kaplan I, Bezemer TM (2017) Steering soil microbiomes to suppress aboveground insect pests. Trends Plant Sci 22: 770-778. https://doi.org/10.1016/j. tplants.2017.07.002

Potter P, Ramankutty N, Bennett EM, Donner SD (2010) Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact 14(2): 1-22. https://doi.org/10.1175/2009EI288.1  

Qazi MA, Akram M, Ahmad N, Artiola JF, Tuller M (2009) Economical and environmental implications of solid waste compost applications to agricultural fields in Punjab, Pakistan. Waste Manag 29: 2437-2445. https://doi.org/10.1016/j.wasman.2009.05.006

Ramírez-Gil JG, Castañeda-Sánchez DA, Morales-Osorio JG (2013) Dinámica microbial del suelo asociada a diferentes estrategias de manejo de Phytophthora cinnamomi Rands en aguacate. Rev Ceres 60: 811-819. https://doi.org/10.1590/S0034-737X2013000600009

Sahu PK, Singh DP, Prabha R, Meena KK, Abhilash PC (2019) Connecting microbial capabilities with the soil and plant health: Options for agricultural sustainability. Ecol Indic 105: 601-612. https://doi.org/10.1016/j.ecolind.2018.05. 084

Sánchez ÓJ, Ospina DA, Montoya S (2017) Compost supplementation with nutrients and microorganisms in composting process. Waste Manage 69: 136-153. https:// doi.org/10.1016/j.wasman.2017.08.012

Santacoloma-Varón LE, Granados-Moreno JE, Aguirre-Forero SE (2017) Evaluación de variables agronómicas, calidad del forraje y contenido de taninos condensados de la leguminosa Lotus corniculatus en respuesta a biofertilizante y fertilización química en condiciones agroecológicas de trópico alto andino colombiano. Entramado, 13(1), 222-233. http://dx.doi.org/10.18041// entramado.2017v13n1.25136        

Shennan C, Krupnik TJ, Baird G, Cohen H, Forbush K, Lovell RJ, Olimpi EM (2017) Organic and conventional agriculture: A useful framing?. Annu Rev Environ Resour 42: 317-346. https://doi.org/10.1146/annurev-environ-110615-085750

Souza EM, Chubatsu LS, Huergo LF, Monteiro R, Camilios-Neto D, Wassem R, de Oliveira-Pedrosa F (2014) Use of nitrogen-fixing bacteria to improve agricultural

 

productivity. BMC Proc 8(Suppl 4): O23. https://doi.org/ 10.1186/1753-6561-8-S4-O23

Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci. Total Environ 409: 2430-2442. https://doi.org/10.1016/j.scitotenv.2011.03.002  

Storey S, Chualain DN, Doyle O, Clipson N, Doyle E (2015) Comparison of bacterial succession in green waste composts amended with inorganic fertiliser and wastewater treatment plant sludge. Bioresour Technol 179: 71-77. https://doi.org/10.1016/j.biortech.2014.11. 107

Tiquia SM, Tam NF (2000) Co-composting of spent pig litter and sludge with forced-aeration. Bioresour Technol 72: 1-7. https://doi.org/10.1016/S0960-8524(99)90092-5

Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK (2016) Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Front Plant Sci 7: 990. https://doi.org/10.3389/fpls.2016.00990

Urzı C, De Leo F (2001) Sampling with adhesive tape strips: an easy and rapid method to monitor bacterial colonization on monument surfaces. J Microbiol Methods 44: 1-11. https://doi.org/10.1016/S0167-7012 (00)00227-X

Winn W, Allen SD, Janda WM, Koneman EW, Procop GW, Schreckenberger PC, Woods GL (2001) Microbiological diagnosis: text and color atlas. Ed. Médica Panamericana, Madrid, España. 1465 p

Wu K, Yuan S, Wang L, Shi J, Zhao J, Shen B, Shen Q (2014) Effects of bio-organic fertilizer plus soil amendment on the control of tobacco bacterial wilt and composition of soil bacterial communities. Biol Fertil Soils 50: 961-971. https://doi.org/10.1007/s00374-014-0916-9

Xie WY, Shen Q, Zhao FJ (2018) Antibiotics and antibiotic resistance from animal manures to soil: a review. Eur J Soil Sci 69: 181-195. https://doi.org/10.1111/ejss.12494

Yanagi Y, Shindo H (2016) Assessment of long-term compost application on physical, chemical, and biological properties, as well as fertility, of soil in a field subjected to double cropping. Agricult Sci 7: 30-43. https://doi.org/ 10.4236/as.2016.71004

Zhen Z, Liu H, Wang N, Guo L, Meng J, Ding N, Wu G, Jiang, G. (2014) Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China. PLoS One, 9(10): e108555. https://doi.org/10.1371/journal.pone.0108555