Agricultural wastes as renewable fillers in physical granulation of NPK fertilizers: Evaluation of on-size granules and comparison to conventional filler

Document Type: Original Article

Authors

1 Research Group on Chemical Engineering Product Design and Development, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia

2 Study Program of Chemical Engineering Magister, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia

3 Research Group on Chemical Engineering Process Design and Development, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia

Abstract

Purpose This research aimed to evaluate the yield and quality of granular NPK fertilizers prepared by physical granulation with eggshell, snail shell, and cow bone as fillers and to compare them to conventional filler.
Methods Urea, DAP, KCl, and fillers were milled separately and mixed to the desired formula. About 150 g of mixed powders were granulated on a disc granulator in 9 minutes, at a rotation speed of 35 rpm and a disc slope of 45°. Water at a desired additional moisture was sprayed on the tumbled powders to facilitate the granulation. The obtained granules were then dried and screened into three fractions: undersize ( 4 mm).
Results Snail shells and eggshells as fillers were found to give on-size NPK granules having yield and compressive strength which were comparable to that with limestone as a conventional filler. For NPK 15-15-15, using snail shells and eggshells as fillers, the yields of on-size granules achieved 46% and 56%, respectively, and the compressive strengths of on-size granules reached 2.4 and 2.1 MPa, respectively. Cow bones as fillers resulted in low compressive strength. The distribution of nutrients in the NPK granules was found to be close to the targeted formula.
Conclusion Snail shells and eggshells as fillers have good yield and quality of on-size NPK granules and are very potential alternatives to limestone.

Keywords


Abdulrahman A, Latiff AAA, Daud Z, Ridzuan MB, D NFM, Jagaba AH (2016) Preparation and characterization of activated cow bone powder for the adsorption of cadmium from palm oil mill effluent. IOP Conf Ser Mater Sci Eng 136:012045. https://doi.org/10.1088/ 1757-899x/136/1/012045

Abdulrahman I, Tijani HI, Mohammed BA, Saidu H, Yusuf H, Ndejiko Jibrin M, Mohammed S (2014) From garbage to biomaterials: An overview on egg shell based hydroxyapatite. J Mater 2014:1–6. https://doi.org/10. 1155/2014/802467

 

Adetayo AA, Litster JD, Desai M (1993) The effect of process parameters on drum granulation of fertilizers with broad size distributors. Chem Eng Sci 48:3951–3961. https://doi.org/10.1016/0009-2509(93)80374-Y

Adetayo AA, Litster JD, Cameron IT (1995a) Steady state modelling and simulation of a fertilizer granulation circuit. Comput Chem Eng 19:383–393. https://doi. org/10.1016/0098-1354(94)00065-v

Adetayo AA, Litster JD, Pratsinis SE, Ennis BJ (1995b) Population balance modelling of drum granulation of materials with wide size distribution. Powder Technol 82:37–49. https://doi.org/10.1016/0032-5910(94) 02896-v

Afolayan RA, Deland RW, Rutley D, Bottema CDK, Ewers AL, Ponzoni RW, Pitchford WS (2002) Prediction of carcass meat, fat and bone yield across diverse cattle genotype using live-animal measurements. Aust Soc Anim Prod 24:13–16

Akindoyo JO, Beg MDH, Ghazali S, Akindoyo EO, Jeyaratnam N (2017) Synthesis of hydroxyapatite through ultrasound and calcination techniques. IOP Conf Ser Mater Sci Eng 203:012003. https://doi.org/ 10.1088/1757-899x/203/1/012003

Bauer PJ, Szogi AA, Shumaker PD (2019) Fertilizer efficacy of poultry litter ash blended with lime or gypsum as fillers. Environments 6:50. https://doi.org/10.3390/ environments6050050

Boylan DR, Kamat DV (1964) Fertilizer technology: Granulation characteristics of 5-4-12 (5-10-15) fertilizer containing potassium nitrate. J Agric Food Chem 12:423–428. https://doi.org/10.1021/ jf60135a011

Boylan DR, Johnson RT (1966) Granulatin studies: Potassium nitrate as aid to fertilizer granulation. J Agric Food Chem 14:34–36. https://doi.org/10.1021/jf60143a010

Brzezińska-Miecznik J, Haberko K, Sitarz M, Bućko MM, Macherzyńska B (2015) Hydroxyapatite from animal bones – Extraction and properties. Ceram Int 41:4841–4846. https://doi.org/10.1016/j.ceramint.2014.12.041

Business Wire (2020) Growing market for compound fertilizers driven by demand to feed rapidly expanding population. https://www.businesswire.com/news/home /20190725005829/en/. Accessed 2 Jan 2020

Chadwick PC, Bridgwater J (1997) Solids flow in dish granulators. Chem Eng Sci 52:2497–2509. https://doi. org/10.1016/s0009-2509(97)00068-7

Chai X, Chen L, Xue B, Liu E (2017) Granulation of ammonium chloride fertilizer and agglomeration mechanism. Powder Technol 319:148–153. https://doi. org/10.1016/j.powtec.2017.06.045

Clayton WE (1984) Humidity factors affecting storage and handling of fertilizers. International Fertilizer Development Center, Muscle Shoals, Alabama, USA

Cotabarren IM, Rossit J, Bucalá V, Piña J (2009) Modeling of an industrial vibrating double-deck screen of a urea granulation circuit. Ind Eng Chem Res 48:3187–3196. https://doi.org/10.1021/ie800968y

Cotabarren IM, Bertín D, Romagnoli J, Bucalá V, Piña J (2010) Dynamic simulation and optimization of a urea granulation circuit. Ind Eng Chem Res 49:6630–6640. https://doi.org/10.1021/ie901885x

Cotabarren IM, Bertín D, Piña J, Bucalá V (2011) Analysis of optimal control problems and plant debottlenecking for urea granulation circuits. Ind Eng Chem Res 50:11996–12010. https://doi.org/10.1021/ie200043z

Cotabarren IM, Bertín DE, Bucalá V, Piña J (2013) A validated flowsheeting tool for the study of an industrial granulation process. Ind Eng Chem Res 52:15198–15210. https://doi.org/10.1021/ie401650r

Delwel F, Veer FA (1978) Continuous granulation of sodium triphosphate in a pan granulator. Ind Eng Chem Process Des Dev 17:261–265. https://doi.org/10.1021 /i260067a009

Doerr SH (1998) On standardizing the ‘Water Drop Penetration Time’ and the ‘Molarity of an Ethanol Droplet’ techniques to classify soil hydrophobicity: A case study using medium textured soils. Earth Surf Process Landf 23:663–668

Doshi SR (1991) Fusion blend. Fertil Res 30:87–97. https://doi. org/10.1007/bf01048831

Engin B, Demirtaş H, Eken M (2006) Temperature effects on egg shells investigated by XRD, IR and ESR techniques. Radiat Phys Chem 75:268–277. https://doi.org/10.1016/j.radphyschem.2005.09.013

FAO (2020) Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QA. Accessed 2 Jan 2020

Field RA, Riley ML, Mello FC, Corbridge JH, Kotula AW (1974) Bone composition in cattle, pigs, sheep and poultry. J Anim Sci 39:493–499. https://doi.org/10. 2527/jas1974.393493x

Gao F, Zhou S, Yang Z, Han L, Liu X (2017) Study on the characteristic spectral properties for species identification of animal-derived feedstuff using fourier transform infrared spectroscopy. Appl Spectrosc 71:2446–2456. https://doi.org/10.1177/ 0003702817732323

Gheisari H, Karamian E, Abdellahi M (2015) A novel hydroxyapatite –hardystonite nanocomposite ceramic. Ceram Int 41:5967–5975. https://doi.org/10.1016/j. ceramint.2015.01.033

Giddings SA, Delapp D (1962) Ammoniation-granulation research: laboratory design and operation of apparatus for ammoniation-granulation of triple superphosphate. J Agric Food Chem 10:65–68. https://doi. org/10.1021/jf60119a022

Giddings SA, DeLapp DF (1963) Ammoniation-granulation research: A laboratory-scale study of simultaneous ammoniation and granulation of triple superphosphate. J Agric Food Chem 11:309–313. https://doi.org/10. 1021/jf60128a011

Gluba T (2003) The effect of wetting liquid droplet size on the growth of agglomerates during wet drum granulation. Powder Technol 130:219–224. https://doi.org/10.1016/ s0032-5910(02)00269-3

Gowariker V, Krishnamurthy VN (2009) The fertilizer encyclopedia. John Wiley & Sons, New Jersey

Hamideh F, Akbar A (2018) Application of eggshell wastes as valuable and utilizable products: A review. Res Agric Eng 64:104–114. https://doi.org/10.17221/6/2017-rae

Hardesty JO, Ross WH (1938) Factors affecting granulation of fertilizer mixtures. Ind Eng Chem 30:668–672. https://doi.org/10.1021/ie50342a013

Hardesty JO, Szabo A, Cummings JG (1956) Fertilizer granulation: Effects of formulation of granulation of mixed fertilizers. J Agric Food Chem 4:60–63. https://doi.org/10.1021/jf60059a005

Herce C, Gil A, Gil M, Cortés C (2017) A CAPE-Taguchi combined method to optimize a NPK fertilizer plant including population balance modeling of granulation-drying rotary drum reactor. In: Espuña A, Graells M, Puigjaner L (eds) Computer Aided Chemical Engineering. Elsevier, pp 49–54

Hossain A, Bhattacharyya SR, Aditya G (2015) Biosorption of cadmium from aqueous solution by shell dust of the freshwater snail Lymnaea luteola. Environ Technol Innov 4:82–91. https://doi.org/10.1016/j.eti.2015.05. 001

Hu S, Wang Y, Han H (2011) Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production. Biomass Bioenergy 35:3627–3635. https://doi.org/10.1016/j.biombioe.2011.05.009

Hwidi RS, Izhar TNT, Saad FNM (2018) Characterization of limestone as raw material to hydrated lime. E3S Web Conf 34:02042. https://doi.org/10.1051/e3sconf/ 20183402042

Iveson SM, Litster JD, Ennis BJ (1996) Fundamental studies of granule consolidation Part 1: Effects of binder content and binder viscosity. Powder Technol 88:15–20. https://doi.org/10.1016/0032-5910(96)03096-3

Iveson SM, Litster JD (1998) Fundamental studies of granule consolidation part 2: Quantifying the effects of particle and binder properties. Powder Technol 99:243–250. https://doi.org/10.1016/s0032-5910(98)00116-8

Iveson SM, Litster JD, Hapgood K, Ennis BJ (2001) Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technol 117:3–39. https://doi.org/10.1016/s0032-5910 (01)00313-8

Iwanegbe I, Obaroakpo JU, Afehomo E (2016) Physical components, yield, and weight loss of snail meat products. Niger J Agric Food Environ 12:128–132

Jeffery GH, Basset J, Mendham J, Denney RC (1989) Vogels textbook of quantitative chemical analysis. John Wiley & Sons, New York

Jovanovski G, Stefov V, Šoptrajanov B, Boev B (2002) Minerals from Macedonia. IV. Discrimination between some carbonate minerals by FTIR spectroscopy. Neues Jahrb Für Mineral - Abh 177:241–253. https://doi.org/10.1127/0077-7757/2002/0177-0241

Kapur PC, Runkana V (2003) Balling and granulation kinetics revisited. Int J Miner Process 72:417–427. https://doi.org/10.1016/s0301-7516(03)00116-9

Keene BE, Knowlton KF, McGilliard ML, Lawrence LA, Nickols-Richardson SM, Wilson JH, Rutledge AM, McDowell LR, Amburgh MEV (2004) Measures of bone mineral content in mature dairy cows. J Dairy Sci 87:3816–3825. https://doi.org/10.3168/jds.s0022-0302 (04)73521-3

Khalil, Reswati, Ferawati, Kurnia YF, Agustin F (2017) Studies on physical characteristics, mineral composition and nutritive value of bone meal and bone char produced from inedible cow bones. Pak J Nutr 16:426–434. https://doi.org/10.3923/pjn.2017.426.434

King`ori AM (2011) A Review of the uses of poultry eggshells and shell membranes. Int J Poult Sci 10:908–912. https://doi.org/10.3923/ijps.2011.908.912

Kontoyannis CG, Vagenas NV (2000) Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. The Analyst 125:251–255. https://doi. org/10.1039/a908609i

Kouakou KTB, Kouassi DK, Kouadio YJ (2015) Management of shells of giant African snails (Achatinidae) from the markets of Abidjan (Côte d’Ivoire). J Appl Biosci 83:7625– 7634

Laskar IB, Rajkumari K, Gupta R, Chatterjee S, Paul B, Rokhum L (2018) Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Adv 8:20131–20142. https://doi.org/10.1039/c8ra02397b

Litster J, Ennis B (2004) The science and engineering of granulation processes. Springer Netherlands

López M, Soliva M, Martínez-Farré FX, Bonmatí A, Huerta-Pujol O (2010) An assessment of the characteristics of yard trimmings and recirculated yard trimmings used in biowaste composting. Bioresour Technol 101:1399–1405. https://doi.org/10.1016/j.biortech.2009.09.031

Mangwandi C, Albadarin AB, Al-Muhtaseb AH, Allen SJ, Walker GM (2013a) Optimisation of high shear granulation of multicomponent fertiliser using response surface methodology. Powder Technol 238:142–150. https://doi.org/10.1016/j.powtec.2012. 03.047

Mangwandi C, JiangTao L, Albadarin AB, Allen SJ, Walker GM (2013b) Alternative method for producing organic fertiliser from anaerobic digestion liquor and limestone powder: High shear wet granulation. Powder Technol 233:245–254. https://doi.org/10.1016/j.powtec.2012. 09.017

Mangwandi C, Albadarin AB, JiangTao L, Allen S, Walker GM (2014) Development of a value-added soil conditioner from high shear co-granulation of organic waste and limestone powder. Powder Technol 252:33–41. https://doi.org/10.1016/j.powtec.2013.10.039

Mangwandi C, JiangTao L, Albadarin AB, Dhenge RM, Walker GM (2015) High shear granulation of binary mixtures: Effect of powder composition on granule properties. Powder Technol 270:424–434. https://doi.org/10.1016/j.powtec.2014.06.021

Marxen JC, Becker W, Finke D, Hasse B, Epple M (2003) Early mineralization in biomphalaria glabrata: Microscopic and structural results. J Molluscan Stud 69:113–121. https://doi.org/10.1093/mollus/69.2.113

Naemchanthara K, Meejoo S, Onreabroy W, Limsuwan P (2008) Temperature effect on chicken egg shell investigated by XRD, TGA and FTIR. Adv Mater Res 55–57:333–336. https://doi.org/10.4028/www.scientific.net/amr.55-57. 333

Ni M, Ratner BD (2008) Differentiating calcium carbonate polymorphs by surface analysis techniques-an XPS and TOF-SIMS study. Surf Interface Anal 40:1356–1361. https://doi.org/10.1002/sia.2904

Nogalska A (2016) Meat and bone meal as fertilizer for spring barley. Plant Soil Environ 62:373–378. https://doi.org/ 10.17221/270/2016-pse

Oliveira DA, Benelli P, Amante ER (2013) A literature review on adding value to solid residues: egg shells. J Clean Prod 46:42–47. https://doi.org/10.1016/j.jclepro.2012. 09.045

Paul MTT, Cécile AE, Pierre OE, Thaddée B (2017) Effects of chitosan and snail shell powder on cocoa (Theobroma cacao L.) growth and resistance against black pod disease caused by Phytophthora megakarya. Afr J Plant Sci 11:331–340. https://doi.org/10.5897/ ajps2016.1487

Pesonen J, Kuokkanen V, Kuokkanen T, Illikainen M (2016) Co-granulation of bio-ash with sewage sludge and lime for fertilizer use. J Environ Chem Eng 4:4817–4821. https://doi.org/10.1016/j.jece.2015.12.035

Reynolds GK, Fu JS, Cheong YS, Hounslow MJ, Salman AD (2005) Breakage in granulation: A review. Chem Eng Sci 60:3969–3992. https://doi.org/10.1016/j.ces.2005. 02.029

Rodrigues RF, Leite SR, Santos DA, Barrozo MAS (2017) Drum granulation of single super phosphate fertilizer: Effect of process variables and optimization. Powder Technol 321:251–258. https://doi.org/10.1016/j. powtec.2017. 08.036

Roschat W, Siritanon T, Kaewpuang T, Yoosuk B, Promarak V (2016) Economical and green biodiesel production process using river snail shells-derived heterogeneous catalyst and co-solvent method. Bioresour Technol 209:343–350. https://doi.org/10.1016/j.biortech.2016. 03.038

Roy P, Vashishtha M, Khanna R, Subbarao D (2009) Size-dependent coalescence kernel in fertilizer granulation—A comparative study. Particuology 7:445–450. https:// doi.org/10.1016/j.partic.2009.09. 005

Stanmore BR, Gilot P (2005) Review—calcination and carbonation of limestone during thermal cycling for CO2 sequestration. Fuel Process Technol 86:1707–1743. https://doi.org/10.1016/j.fuproc.2005.01.023

Thakur RJ, Shaikh H, Gat Y, Waghmare RB (2019) Effect of calcium chloride extracted from eggshell in maintaining quality of selected fresh-cut fruits. Int J Recycl Org Waste Agricult 8:27–36. https://doi.org/ 10.1007/s40093-019-0260-z

Tidmore JW, Simmons CF (1934) The use of limestone in mixed fertilizer, Agricultural experiment station, Circular 67. Alabama Polytechnic Institute

Walker GM, Holland CR, Ahmad MN, Fox JN, Kells AG (2000) Drum granulation of NPK fertilizers. Powder Technol 107:282–288. https://doi.org/10.1016/S0032-5910(99)00253-3

Walker GM, Moursy HEMN, Holland CR, Ahmad MN (2003) Effect of process parameters on the crush strength of granular fertiliser. Powder Technol 132:81–84. https://doi.org/10.1016/s0032-5910(03)00039-1

Xue BC, Liu T, Huang H, Liu EB (2014) The effect of the intimate structure of the solid binder on material viscosity during drum granulation. Powder Technol 253:584–589. https://doi.org/10.1016/j.powtec.2013. 12.025

Xue C, Chen Y, Huang Y, Zhu P (2015) Hydrothermal synthesis and biocompatibility study of highly crystalline carbonated hydroxyapatite nanorods. Nanoscale Res Lett 10(1):1018. https://doi:10. 1186/ s11671-015-1018-9

Zaheer K (2015) An updated review on chicken eggs: Production, consumption, management aspects and nutritional benefits to human health. Food Nutr Sci 06:1208–1220. https://doi.org/10.4236/fns.2015. 613127