The potential of recycling wool residues as an amendment for enhancing the physical and hydraulic properties of a sandy loam soil


1 Damanhour University

2 CNR IBiMet, National Research Council of Italy, Institute of Biometeorology


Purpose Climate change and global food demand in coming decades urge efective actions for more efcient uses of water and soil resources. This paper reports the preliminary fndings of a study assessing the potential of sheep scoured wool residues (SWRs) as soil amendments to enhance the physical and hydraulic properties of a sandy loam soil under rain conditions. Methods Two diferent SWRs were used: scoured residues (white wool, WW) and carbonized scoured residues (black wool, BW) at diferent SWRs/soil ratios (0.0, 0.5, 1.0 and 2.0%). Soil bulk density (BD), total porosity (TP), aggregates stability, aggregate size distribution, saturated hydraulic conductivity, and water retention properties were determined under rain conditions, in addition to rainwater balance (storage, percolation and runof). Results Both WW and BW, particularly at the high wool/soil ratio (2%), signifcantly reduced soil BD by 11.98% and 9.85%, respectively. Moreover, WW and BW increased TP by 16.45% and 13.57% and available water capacity by 6.5% and 18.1%, respectively. SWRs increased the formation of macro-aggregates and increased aggregate stability. The results of rainwater balance showed higher percolation percentages and less rainwater storage in the wool-treated soil. Conclusions The increase in water percolation is in line with the increased total porosity and the higher saturated hydraulic conductivity of wool-treated soil. Despite the high capacity of absorbing water, SWRs afected the water movement of the soil more than its water retention.